If it's not what You are looking for type in the equation solver your own equation and let us solve it.
500(t)=-16t^2+175
We move all terms to the left:
500(t)-(-16t^2+175)=0
We get rid of parentheses
16t^2+500t-175=0
a = 16; b = 500; c = -175;
Δ = b2-4ac
Δ = 5002-4·16·(-175)
Δ = 261200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{261200}=\sqrt{400*653}=\sqrt{400}*\sqrt{653}=20\sqrt{653}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(500)-20\sqrt{653}}{2*16}=\frac{-500-20\sqrt{653}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(500)+20\sqrt{653}}{2*16}=\frac{-500+20\sqrt{653}}{32} $
| N^2+2n+4=136 | | x°3=2x+4 | | 7z-5=2-11 | | xx+24=5x | | 2n+14=50 | | (3x+7)^8=0 | | 6x+7=-137-10 | | 6.√x-√x=16 | | 3x-1/7=2 | | 3x-1÷7=2 | | 10x+4/7=3 | | 2(x-7)=x-4+3 | | 2) 4(2x-5)+8(3x-5)=5(4x-3)-3(2x-3) | | 2x^2-20x+96=64 | | ⅔x=16 | | -(8+3x)+5=2x+6 | | 167+11x=200 | | x^2-x+13=-9x-2 | | 2r-7=8 | | 5x-9=7x+2 | | 4(2y−8)=60 | | 2x^2-20x+96=0 | | 6+6x=30-x | | 5y=37+8 | | 2y+8-2=30-6 | | 7x+5÷4=10 | | 1/x-1/x+1=1/182 | | 3x/27=82 | | X-6=2x- | | 2x^+2x-12=0 | | x+(3x+2)+(x+3x+2)=100 | | i+2i+3=39 |